If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-38x+106=0
a = 3; b = -38; c = +106;
Δ = b2-4ac
Δ = -382-4·3·106
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-2\sqrt{43}}{2*3}=\frac{38-2\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+2\sqrt{43}}{2*3}=\frac{38+2\sqrt{43}}{6} $
| 9a+3=6a | | 25=11y+y+14 | | X+24+8=x | | 2x+4-7x=1-4x+4-x | | x-8.41=$23.57 | | x+2.39+4.95=14.69 | | 8+z=15.62 | | (9x-12)×(2x+10)=35×28 | | (3x/5)=21 | | 5x^2+20x-30=X | | (x/3)+1=6 | | x/3)+1=6 | | 2x*2x=256 | | 6(3k+2)=-20+7k | | 5(2x-1=29 | | -9(23+8x)=-567 | | 43/10-(12/5x+11/2)=1/2(-18.5x+6/5) | | F=80k | | 43/10-(12/5x+11/2)=1/2(-18.5x+6/5 | | e+(-44)=-45 | | 5(13+2x)=75 | | -7.8=4.3-x | | D(x)=4x-7-4x | | 3-2(.5x+1.5)=2 | | (3x-12)+(3x+24)=6x+24 | | x/7=12/5 | | -8/5b=15/7 | | 1.8=57+3x | | -3r-6=18 | | x-0.08=16 | | 4-9x=3-10x-7(-x) | | 24x+9=180 |